Building Blocks for Earth-Sized Planets Found Near Dead Stars

This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI)

› Larger image

NASA’s Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place– the atmospheres of a pair of burned-out stars called white dwarfs.

These dead stars are located 150 light-years from Earth in a relatively young star cluster, Hyades, in the constellation Taurus. The star cluster is only 625 million years old. The white dwarfs are being polluted by asteroid-like debris falling onto them.

Hubble’s Cosmic Origins Spectrograph observed silicon and only low levels of carbon in the white dwarfs’ atmospheres. Silicon is a major ingredient of the rocky material that constitutes Earth and other solid planets in our solar system. Carbon, which helps determine properties and origin of planetary debris, generally is depleted or absent in rocky, Earth-like material.

“We have identified chemical evidence for the building blocks of rocky planets,” said Jay Farihi of the University of Cambridge in England. He is lead author of a new study appearing in the Monthly Notices of the Royal Astronomical Society. “When these stars were born, they built planets, and there’s a good chance they currently retain some of them. The material we are seeing is evidence of this. The debris is at least as rocky as the most primitive terrestrial bodies in our solar system.”

Credit: NASA

This discovery suggests rocky planet assembly is common around stars, and it offers insight into what will happen in our own solar system when our sun burns out 5 billion years from now.

Farihi’s research suggests asteroids less than 100 miles (160 kilometers) wide probably were torn apart by the white dwarfs’ strong gravitational forces. Asteroids are thought to consist of the same materials that form terrestrial planets, and seeing evidence of asteroids points to the possibility of Earth-sized planets in the same system.

Image credit: NASA/JPL-Caltech

The pulverized material may have been pulled into a ring around the stars and eventually funneled onto the dead stars. The silicon may have come from asteroids that were shredded by the white dwarfs’ gravity when they veered too close to the dead stars.

“It’s difficult to imagine another mechanism than gravity that causes material to get close enough to rain down onto the star,” Farihi said.

By the same token, when our sun burns out, the balance of gravitational forces between the sun and Jupiter will change, disrupting the main asteroid belt. Asteroids that veer too close to the sun will be broken up, and the debris could be pulled into a ring around the dead sun.

According to Farihi, using Hubble to analyze the atmospheres of white dwarfs is the best method for finding the signatures of solid planet chemistry and determining their composition.

Credit: NASA

“Normally, white dwarfs are like blank pieces of paper, containing only the light elements hydrogen and helium,”Farihi said. “Heavy elements like silicon and carbon sink to the core. The one thing the white dwarf pollution technique gives us that we just won’t get with any other planet-detection technique is the chemistry of solid planets.”

The two “polluted” Hyades white dwarfs are part of the team’s search of planetary debris around more than 100 white dwarfs, led by Boris Gansicke of the University of Warwick in England. Team member Detlev Koester of the University of Kiel in Germany is using sophisticated computer models of white dwarf atmospheres to determine the abundances of various elements that can be traced to planets in the Hubble spectrograph data.

Fahiri’s team plans to analyze more white dwarfs using the same technique to identify not only the rocks’ composition, but also their parent bodies.

Kepler Data. . .Earth-size Planets May Be Next Door

Red Dwarf Planet: The artist's conception shows a hypothetical planet with two moons orbiting in the habitable zone of a red dwarf star. Click image for full caption and larger size. Credit: D. Aguilar/Harvard-Smithsonian Center for Astrophysics

Using publicly available data from NASA’s Kepler space telescope, astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) estimate that six percent of red dwarf stars in the galaxy have Earth-size planets in the “habitable zone,” the range of distances from a star where the surface temperature of an orbiting planet might be suitable for liquid water.The majority of the sun’s closest stellar neighbors are red dwarfs. Researchers now believe that an Earth-size planet with a moderate temperature may be just 13 light-years away.”We don’t know if life could exist on a planet orbiting a red dwarf, but the findings pique my curiosity and leave me wondering if the cosmic cradles of life are more diverse than we humans have imagined,” said Natalie Batalha, Kepler mission scientist, NASA’s Ames Research Center in Moffett Field, Calif.

Size of Kepler Planet Candidates Image credit: NASA

The research team analyzed 95 planet candidates in the Kepler catalog orbiting 64 red dwarf stars. Most of these candidates aren’t the right size or temperature to be considered Earth-like, as defined by the size relative to Earth and the distance from the host star. However, three candidates are both temperate and smaller than twice the size of Earth.

Red dwarf stars are smaller, cooler, and fainter than the sun. An average red dwarf is only one-third as large and one-thousandth as bright as the sun. Consequently, the not too hot or not too cold habitable zone would be much closer to a cooler star than it is to the sun.

“This close-in habitable zone around cooler stars makes planets more vulnerable to the effects of stellar flares and gravitational interactions, complicating our understanding of their likely habitability,” said Victoria Meadows, professor at the University of Washington and principal investigator with the NASA Astrobiology Institute. “But, if the planets predicted by this study are indeed found very nearby, then it will make it easier for us to make the challenging observations needed to learn more about them, including whether or not they can or do support life.”

The three planetary candidates highlighted in this study are Kepler Object of Interest (KOI) 1422.02, which is 90 percent the size of Earth in a 20-day orbit; KOI-2626.01, 1.4 times the size of Earth in a 38-day orbit; and KOI-854.01, 1.7 times the size of Earth in a 56-day orbit.

Located between 300 to 600 light-years away, the three candidates orbit stars with temperatures ranging from 3,400 to 3,500 degrees Kelvin. By comparison, the temperature of the sun is nearly 5,800 degrees Kelvin.

Artist's concept of a young, red dwarf star surrounded by three planets.

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone. Kepler is detecting planets and possible candidates with a wide range of sizes and orbital distances to help scientists better understand our place in the galaxy.

Ames manages Kepler’s ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with JPL at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA’s 10th Discovery Mission and is funded by NASA’s Science Mission Directorate at the agency’s headquarters.

For more information about the discovery, see the CfA press release.

For information about the Kepler Mission, click here.

Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-6982
michele.johnson@nasa.gov